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Development of Gene Expression Sighatures Characterizing the Tumor-Immune Interaction

Abstract

Background

The efficacy of anti-tumor immunity depends on diverse factors, including not just abundance of immune cell
populations but also activities of those populations. Many of these processes are onerous or even impossible to assay,
but all are reflected in a tumor’s gene expression profile. Using a novel method, we develop gene expression signatures
measuring a variety of biological processes underlying the tumor-immune interaction. These signatures fall into
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A Panel of Gene Expression Signatures for Interpreting the Tumor-Immune Interaction

Signatures and single genes detailing the tumor/immune interaction. Bold signatures were trained as part of this study. Other useful signatures and single genes were
taken from the literature and analyzed alongside our new signatures. All the signatures in the table are included in the NanoString 10 360™ panel. The Tumor
Inflammation Signature is an RUO version of the 18-gene signature developed by Ayers et al. that measures a peripherally suppressed adaptive immune system in
the tumor. An IUO version of the TIS assay is available for retrospective or prospective use in clinical trials.
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Pan-Cancer Study of 10 Signatures: Analysis in TCGA

Expression of Hot vs Cold Tumors

We use the Tumor Inflammation Signature (TIS) to measure the
overall level of immune infiltration within a tumor. This heatmap

Search for clusters in signature scores

Variables with clusters or bimodality are often of additional biological

interest or diagnostic relevance. To identify such patterns in our
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