

NanoString Technologies 530 Fairview Avenue North, Seattle, WA 98109

Deciphering the complexities of neurodegeneration and neuroinflammation with NanoString[®] gene expression profiling

Abstract	Methods		Assess pathway dysregulation and monitor disease progression			
Neurodegenerative diseases represent a growing health concern and economic burden as the aging population increases and disease rates soar. Although early diagnosis and treatment have remained elusive, much progress has been made by applying molecular approaches, notably gene expression and proteomic	Human and mouse samples obtained from the University of Pennsylvania Center for Neurodegenerative Disease Research were tested for use with the nCounter Human and Mouse Neuropathology Panels and analyzed with the nSolver Advanced Analysis 2.0 software.		Alzheimer's-associated neurotransmission deficits			
profiling, to advance our understanding of disease at a mechanistic level. To address the growing need for biomarkers, gene expression signatures, and novel drug targets in			Transmitter Response & Reuptake	Transmitter Synthesis and Storage	Transmitter Release	
neurological disease, NanoString has collaborated with leaders in the field to develop novel and powerful gene expression tools. These tools bring the robustness and simplicity of the nCounter® system along with its expertly curated and data-driven panel development approach to areas such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), neuropathic pain, traumatic brain injury (TBI), and infections of the CNS. The nCounter Neuropathology and Neuroinflammation gene expression panels were used to detect disease specific changes in gene expression within fresh frozen, formalin-fixed, paraffin- embedded (FFPE), and blood. Our results show robust performance regardless of sample type or post-mortem interval (PMI) and high concordance between fresh frozen and fixed samples. Marked changes in gene expression within key pathways were observed between normal and diseased patients, correlated with disease progression. Finally, our cell type profiling analysis enabled the measurement of changes in cell composition within specific regions of the CNS over various stages of disease. All data was generated in less than 24 hours from purified RNA to results using the nCounter Analysis System.	Sample Types: Mouse: Whole brain hemispheres lacking cerebellum from 9-12 month old 5XFAD mice and wild-type littermate controls. Human: Alzheimer's disease: frontal cortex, hippocampus & visual cortex Parkinson's disease: midbrain & hippocampus Frontotemporal dementia (FTD): frontal cortex & whole blood	Sample Input: Mouse: Purified RNA from fresh-frozen tissue (50 ng) Human: Purified RNA from fresh-frozen (100 ng), ethanol-fixed & FFPE brain tissue (100 ng, adjusted for DV200) Purified RNA from whole blood (100 ng) Analysis: data were analyzed using nSolver Advanced Analysis 2.0.	Bathway Score		$ \begin{array}{c} 6 \\ -2 \\ -2 \\ -6 \\ -6 \\ -6 \\ -6 \\ -6 \\ -6 \\ -6 \\ -6$	
NanoString's goal is to bring the advanced multiplexed molecular profiling tools that have accelerated the field of cancer drug development including pathway mapping, predictive biomarkers, biology subtyping, mixed-cell deconvolution and others to help lead transformational progress in the important field of neuroscience.	Robust performance on a variety of sample types		Hills Mr Hermediate Lov	Hills NO Intermediate LO	His Memodia. Le	
nCounter workflow	Excellent correlation between fresh frozen and FFPE specimens		FIGURE 5. Conserved disturbance in neurotransmission pathway scores. Pathway score using nSolver Advanced Analysis software reveals decreased score in association with High AD for transmitter response and uptake (left), transmitter synthesis and storage (center), and transmitter release (right). Progressive changes are evident in accordance with disease severity.			

NanoString's nCounter Analysis System performs a highly multiplexed, digital quantification of up to 800 genes in a single reaction. This is achieved with the help of reporter codesets, which are color-coded "barcodes" specific for each gene.

Workflow consists of three major steps:

Hybridization he hvbridization ste ne codeset hybridizes t ne mRNA target in olution.

Purification cation is carried or v which re nCounter cartridge

ta collection.

nCounter

Neuropathology Panel

CNS-specific Cell Type

Profiling

}

Oligodendrocytes

Axon and Dendrite Structure

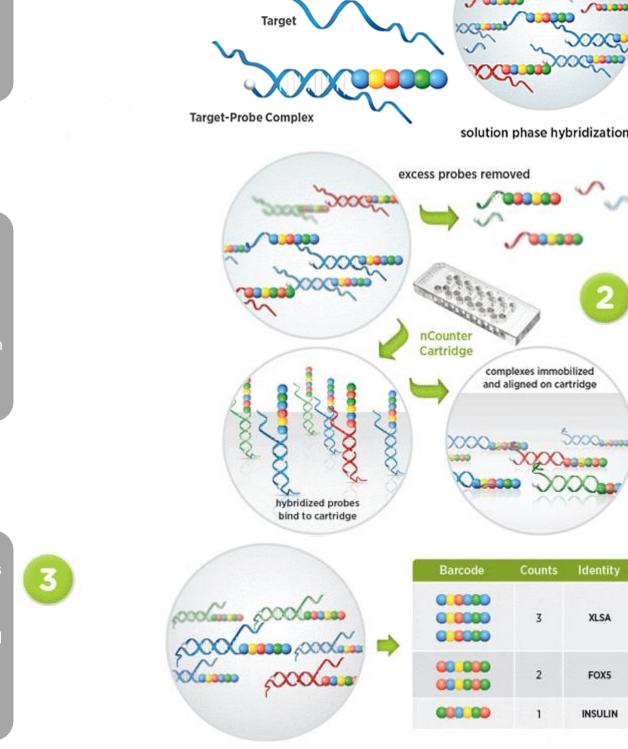
Neural Connectivity

Neuronal Cytoskeleton

Tissue Integrity

Autophagy

ndothelial Cells


Microglia

Compartmentalization

& Structural Integrity

lysis software and

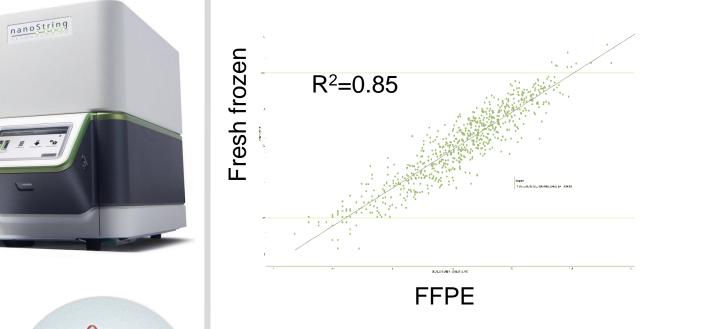
anced analysis

Capture Probe

11 = * *

5

XLSA


FOX5

INSULIN

3

1

5

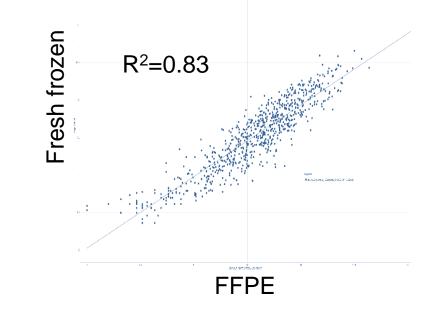


FIGURE 1. Robust performance on FFPE tissue. Patient-matched fresh frozen (FF) and formalin-fixed paraffin embedded (FFPE) samples were compared from 2 different patients. FF and FFPE samples in both cases were taken from opposite brain hemispheres. Top Left: hippocampus, low AD case. Top Right: Frontal cortex, high AD case.

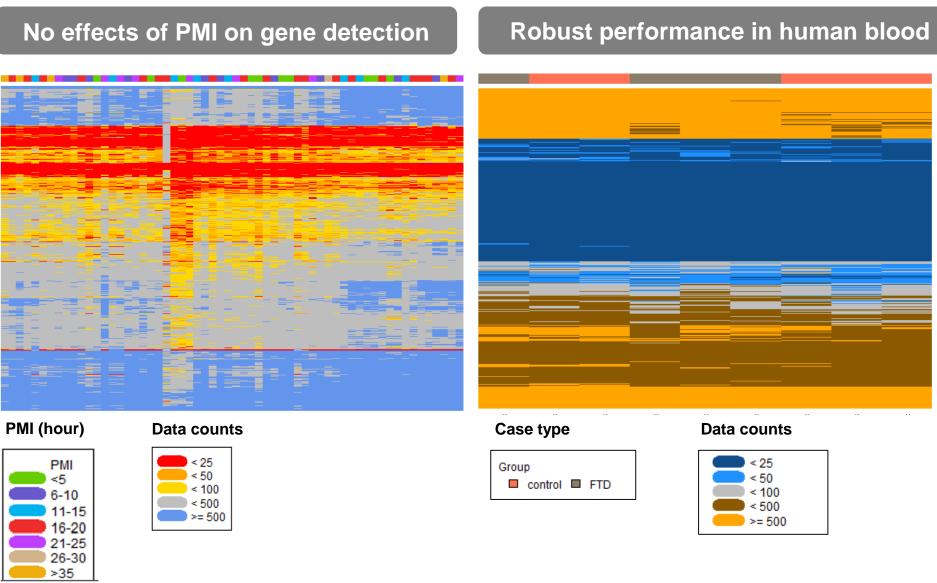
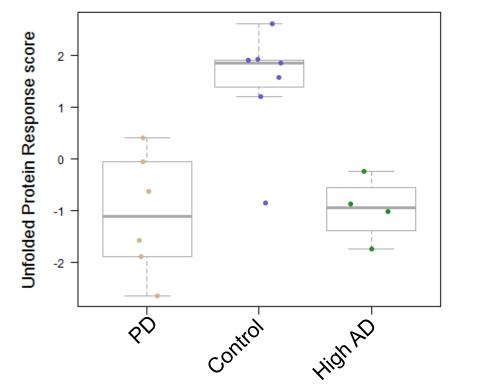



FIGURE 2. NanoString platform performance in association with post-mortem interval (PMI) and in blood samples. Left: Unbiased clustering reveals that samples do not cluster based on PMI. Robust counts can be seen in all PMI groups ranging from <5- >35 hours PMI. FFPE brain specimens. Right: Raw data obtained from whole blood samples demonstrate that 63% of all genes included in the neuropath panel were detected above limit of detection in blood samples from healthy control and frontotemporal dementia patients. n=5 controls, n=4 FTD patients.

Work directly on cell lysates and crude FFPE extracts

Conserved changes in AD and PD

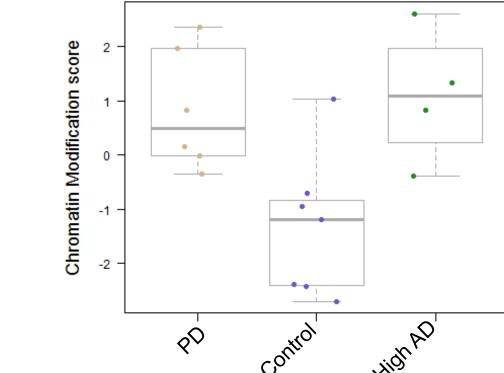
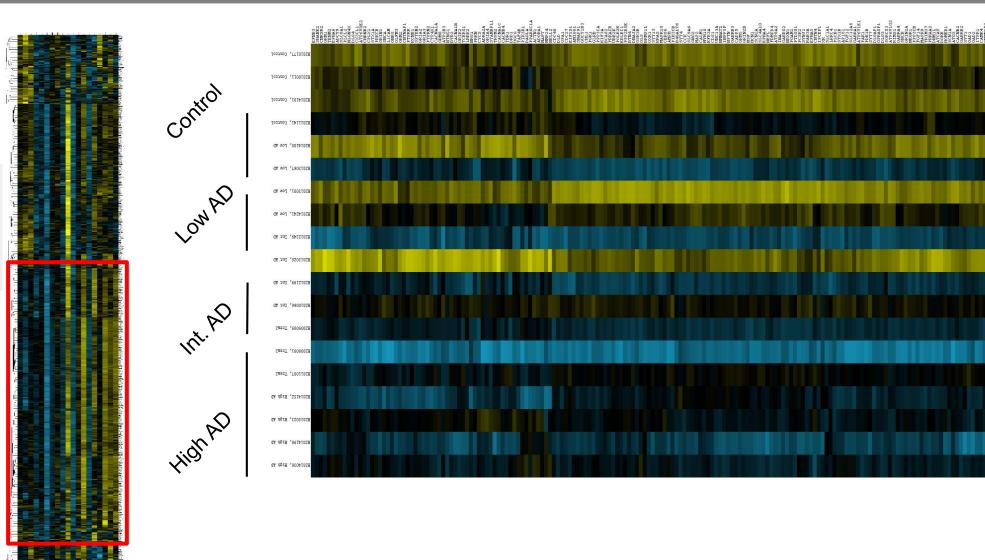
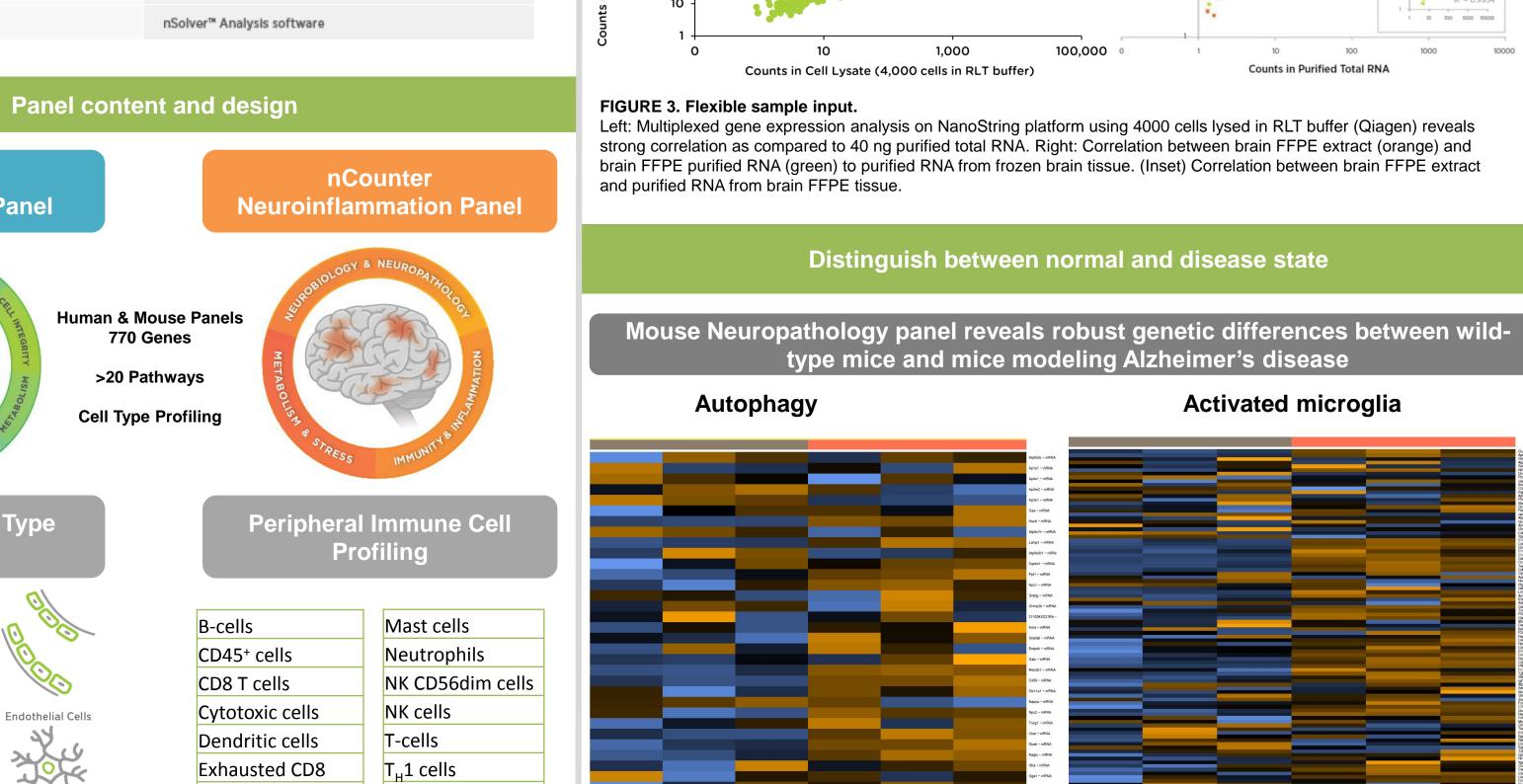


FIGURE 6. Conserved changes in AD and PD pathway scores. AD hippocampus and PD hippocampus in late stage of disease are compared to control patients. Left: Unfolded protein response pathway score is reduced in both AD and PD. Right: Chromatin modification pathway score is elevated in both AD and PD.

Monitoring disease progression in the AD hippocampus




FIGURE 7. Neuropathology panel content includes relevant genes that are altered in accordance with disease progression. Rapid identification of a subset of genes that change in accordance with disease progression: highest expression seen in control patients with

Number of Targets

Feature

Specifications

Standard Input Material (No amplification required)	25 ng-300 ng	
Low Input Material	As little as 1 ng with nCounter RNA Low Input Kit and Panel specific primer pools (sold seperately)	
Sample Type(s)	FFPE-derived RNA, total RNA, fragmented RNA, PBMCs, whole blood/plasma, IPS cells	
Customizable	Add up to 30 unique genes with Panel-Plus	
Time to Results	Approximately 24 hours	
Data Analysis	nSolver™ Analysis software	

5xFAD

Genotype

-3-2-10 1 2 3

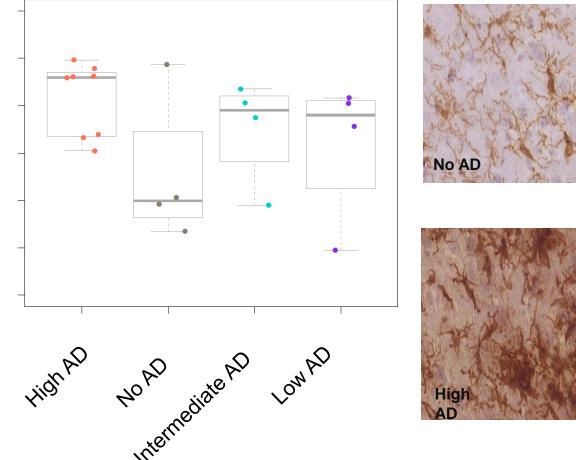
z-scores

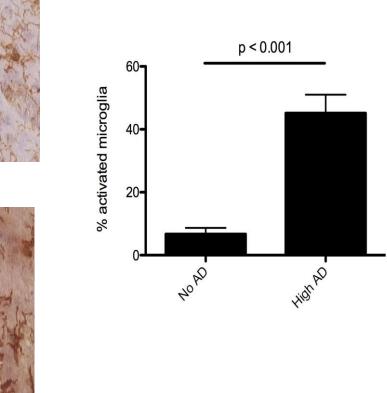
Wild-type

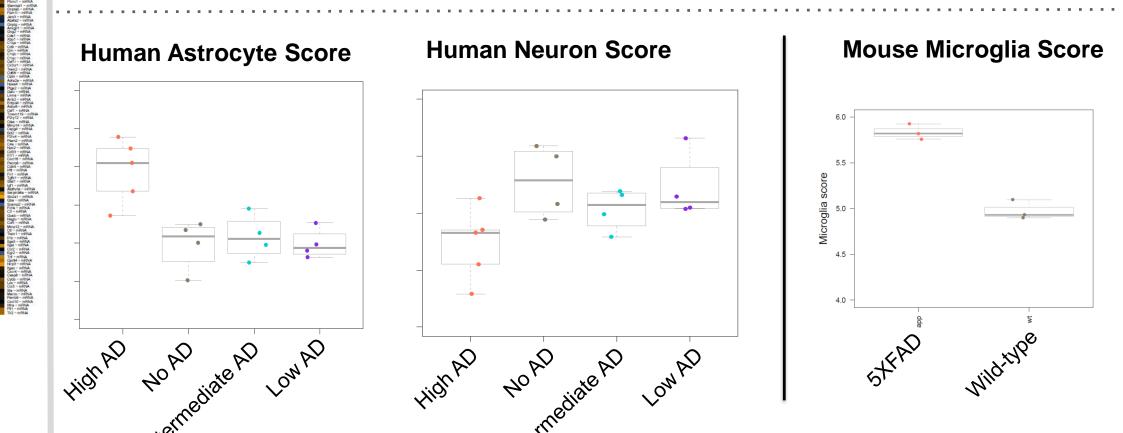
Brain FFPE Purified RNA = 0.8609x + 12.04 R² = 0.9343 1,000,000 R² = 0.9841 Brain FFPE Extract 100,000 10,000 1,000 100 $R^2 = 0.9954$

Left: Multiplexed gene expression analysis on NanoString platform using 4000 cells lysed in RLT buffer (Qiagen) reveals strong correlation as compared to 40 ng purified total RNA. Right: Correlation between brain FFPE extract (orange) and brain FFPE purified RNA (green) to purified RNA from frozen brain tissue. (Inset) Correlation between brain FFPE extract

a progressive increase corresponding to increasing disease severity. Hippocampal FFPE specimens from high AD; Intermediate AD; low AD and normal controls; ABC neuropathological staging criteria.


Integrated content and analysis enable neuronal and immune cell type profiling


Cell profiling in the brain confirms neuropathology


Human Microglia Score

-3.00 -2.00 -1.00

2.00

Carbohydrate Metabolism		NF-kB	
Lipid Metabolism	Metabolism	Autophagy	Metabolism & Stress
Oxidative Stress	Ivietabolisti	Carbohydrate Metabolism	
Transcription and Splicing		Cellular Stress	
Unfolded Protein Response		Lipid Metabolism	
Activated Microglia		Angiogenesis	Neurobiology & Neuropathology
Cytokines	Neuroinflammation	Apoptosis	
Matrix Remodeling		Astrocyte Function	
Myelination	Neuron-Glia	Cell Cycle	
Trophic Factors	interaction	DNA Damage	
Angiogenesis		Epigenetic Regulation	
Apoptosis	Neuroplasticity,	Growth Factor Signaling	
Chromatin Modification	Development & Aging	Insulin Signaling	
Growth Factor Signaling		Matrix Remodeling	
Transmitter Release		Neurons and Neurotransmission	
Transmitter Response and Reuptake	Neurotransmission	Notch	
Transmitter Synthesis and Storage	Neurotransmission	Oligodendrocyte Function	
Vesicle Trafficking		Wnt	

Macrophages

Adaptive Immune Response

Cytokine Signaling

Inflammatory Signaling

Innate Immune Response

Microglia Function

Immunity &

Inflammation

URE 4. Panel content distinguishes control from diseased tissue. Unbiased clustering reveals robust differential ression for autophagy and activated microglia pathways. (left) 5XFAD mouse model of Alzheimer's disease show increased ophagy. (Right) Increased microglia activation in 5xFAD mice compared to wild-type controls. N=3 mice per group.

FIGURE 8. Neural cell profiling. Top Left: Cell type profiling using nSolver Advanced Analysis software reveals increased microglia score in association with High AD. Top Right: Iba1 immunohistochemistry demonstrates microglia activation in the human AD hippocampus. Quantification reveals a significant increase in activated microglia correlating with cell profiling data. Calculated as percent of total microglia. Student's t test. Bottom Left: Cell profiling in AD cases reveals increased astrocyte scores and reduced neuron scores, consistent with known gliosis and neurodegeneration. Similarly, cell profiling analysis of 5XFAD mouse tissue reveals increased microglia scores in line with human data.

	Conclusion	Acknowledgements
logy & hology	 nCounter Analysis System and new Gene Expression panels provide researchers with a powerful yet simple tool for accelerating research in Neurodegenerative Diseases and Neuroinflammation. Data driven panel design and panel content developed to cover neurodegenerative diseases broadly, enable discovery of targetable biology that is consistent across diseases. nCounter gene expression panels show robust and reproducible performance on a variety of sample types, including human post-mortem tissue. Panel content allows rapid identification of biology that distinguishes between normal and disease state and with Mouse and Human versions the panels enable seamless translational research. Novel cell profiling feature enables cell type profiling for key neuronal and immune cell types, measuring relative abundance. 	NanoString would like to thank our collaborators, John Trojanowski, Stefan Prokop, Vivianna VanDeerlin, EunRan Suh and Zhuohao He at the University of Pennsylvania, Perelman School of Medicine's Center for Neurodegenerative Disease Research (CNDR) for their participation in this study.

Integrated panel content and advanced analysis modules allow for rapid and deep data insights.

March, 20 2018

FOR RESEARCH USE ONLY. Not for use in diagnostic procedures.

www.nanostring.com | info@nanostring.com | 🚽 @nanostringtech

© 2018 NanoString Technologies, Inc. NanoString, NanoString Technologies, the NanoString logo, nCounter and nSolver are trademarks or registered trademarks of NanoString Technologies, Inc., in the United States and/or other countries.

Kelly Miller, Erin Piazza, Jamie Kuhar, Kyle Downey, Patrick Danaher, Afshin Mashadi-Hossein, Christina Bailey and Joseph Beechem NanoString Technologies, Seattle, WA